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Abstract. In this paper, we make use of the theory of dynamical
system in order to investigate the well-posedness of a model govern-
ing the spread of diabesity with the effect of treatment. The model
consists of a system of nonlinear ordinary differential equations with
a nonlinear incidence response. Positivity, boundedness, global exis-
tence and uniqueness of the solutions are established. In particular,
Lyapunov stability theory and spectral methods are employed to in-
vestigate the stability of the disease free and endemic equilibria.
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1. Introduction

Lifestyle diseases are associated with the way of people living. They

include obesity, diabetes, atherosclerosis, heart disease, stroke and diseases

associated with smoking and alcohol and drug abuse to name, but a few.

Obesity has always been major health hazard and plays a central role in

the pathogenesis of Type 2 diabetes. This type of diabetes accounts for at

least 90 percent of all cases of diabetes and occurs when the body either

stops producing enough insulin for its needs or becomes resistant to the

effect of insulin produced [1, 2, 4, 5, 6].

In this article, we develop and analyze a model that investigates the

dynamics of Type 2 diabetes induced by the prevalence of obesity within
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a population. A system of nonlinear ordinary differential equations is de-

rived in order to predict the evolution of both obesity and diabetes in the

population subdivided into five compartments.

The model is presented in Section 2 with a description of all the param-

eters and a representation of the flow between the various compartments.

In Section 3, mathematical well-posedness of the model is explored.

In particular, positivity and boundedness of the solution will be es-

tablished. Existence of equilibria and the computation of the basic re-

production ratio are established in section 4. Thereafter stability of both

disease free and endemic equilibria are investigated in section 5, followed

by concluding remarks and future direction.

2. The model

In this section, a five compartmental model is formulated to capture

the dynamics of diabetes. It consists of a following system of nonlinear

differential equations:

dS

dt
= Λ− Sg(E)− (µ+ α)S,

dE

dt
= Sg(E)− (µ+ β)E,

dI

dt
= βE − (δ + γ + µ)I,

dT

dt
= γI − µT,

dR

dt
= αS − µR,

(1)

endowed with initial conditions
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S(0) ≡ S0 > 0,

E(0) ≡ E0 > 0,

I(0) ≡ I0 ≥ 0,

T (0) ≡ T0 ≥ 0, and

R(0) ≡ R0 ≥ 0,

where S(t), E(t), I(t), T (t), and R(t) denote susceptible individuals,

obese individuals, people afflicted with diabetes and not receiving treat-

ment, people affected with diabetes and undertaking medication, people

on healthy diet, respectively, at time t. The parameters in the evolution

system (1) are described as follows:

Table 1: Biological meaning of parameters

Parameters Description
Λ recruitment rate into the susceptible population
µ natural death rate
α the rate at which individuals embrace healthy diets
β the rate at which obese individuals develop diabetes
γ the rate at which people affected with diabetes get treated
δ diabetes induced death rate

Following [3], it is assumed that obesity incidence is a nonlinear re-

sponse to the size of obese population, taking the form Sg(E), where the

function g(E) is positive. It is further assumed that

(H1) : g(0) = 0, g′(0) > 0, g′′(E) ≤ 0 for E ≥ 0,

(H2) : lim
E→0+

g(E)

E
= k, 0 < k <∞.

The flow chart of the above model is given by:
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Figure 1: Flow Diagram

Note that the total population N(t) is given by S(t) +E(t) + I(t) + T (t) +

R(t). The rate of change of the total population by adding all the equations

considered in (1) is:

dN

dt
= Λ− µN − δI ≤ Λ− µN. (2)

Clearly, whenever N(t) >
Λ

µ
, we have that

dN

dt
< 0 implying that

we have a decrease in the size of the total population. Next we present a

systematic analysis of our evolution equation.

3. Mathematical analysis

We start by ensuring that the model (1) is mathematically well-posed.

Given the fact that the variables represent biologically densities, it is im-

portant to show that all the variables remain positive at all time.

Lemma 1. For any non-negative initial conditions (S0, E0, I0, T0, R0), sys-

tem (1) has a local solution which is unique.

Proof. Let x = (S, E, I, T, R), system (1) can be rewritten as x′(t) =

f(x(t)), where f : R5 → R5 is a C1 vector field. By the classical differential

equation theory, we can confirm that system (1) has a unique local solution

defined in a maximum interval [0, tm).



Analysis of a model for diabesity dynamics 37

Lemma 2. For any non-negative initial conditions (S0, E0, I0, T0, R0), the

solution of (1) is non-negative and bounded for all t ∈ [0, tm).

Proof. We start by showing positivity of the local solution for any non-

negative initial conditions. It is easy to see that S(t) ≥ 0 for all t ∈ [0, tm).

Indeed, assume the contrary and let t1 > 0 be the first time such that

S(t1) = 0 and S′(t1) ≤ 0.

From the first equation of the system (1), we have S′(t1) = Λ > 0,

which presents a contradiction. Therefore s(t) ≥ 0 for all t ∈ [0, tm). Us-

ing the same argument, positivity E(t), I(t), T (t) and R(t) in the interval

[0, tm) are established.

Furthermore, from (2), we have that

0 < N(t) ≤ Λ

µ
+N(0)e−µt <

Λ

µ
+N(0).

Therefore the solution N(t) is bounded in the interval [0, tm).

Theorem 1. For any non-negative initial conditions (S0, E0, I0, T0, R0),

system (1) has a unique global solution. Moreover, this solution is non-

negative and bounded for all t ≥ 0.

Proof. The solution does not blow up in a finite time as it is bounded, it is

therefore defined at all time t ≥ 0. Other properties of the solution follow

from Lemma (1) and Lemma (2).

4. Equilibria and basic reproduction number

4.1. The basic reproduction number

The basic reproduction number denoted as R0, is a threshold parame-

ter describing the asymptotical behavior of the disease in the population. In

this section, we will derive the basic reproduction number of the evolution

equation by making use of the next generation matrix method formulated



38 S.C. Oukouomi Noutchie et al.

by Van den Driessche and Watmough [7].

Let x be the transpose of (E, I, T, S,R). We rewrite system (1) in the

matrix form
dx

dt
= F(x)− V(x),

where

F(x) =


F1

F2

F3

F4

F5

 =


Sg(E)

0
0
0
0

 and

V(x) =


V1
V2
V3
V4
V5



=


(µ+ β)E

(δ + γ + µ)I − βE
µT − γI

Sg(E) + (µ+ α)S − Λ
µR− αS

 .
It is obvious that the disease free equilibrium is

(E0, I0, T 0, S0, R0) ≡
(

0, 0, 0,
Λ

µ+ α
,

αΛ

µ(µ+ α)

)
. (3)

Following [7], we have that

R0 = ρ(FV −1),

where
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F =


∂F1

∂E

∂F1

∂I

∂F1

∂T

0 0 0
0 0 0


∣∣∣∣
(E0,I0,T 0,S0,R0)

=


kΛ

µ+ α
0 0

0 0 0
0 0 0

 ,

V =



∂V1
∂E

∂V1
∂I

∂V1
∂T

∂V2
∂E

∂V2
∂I

∂V2
∂T

∂V3
∂E

∂V3
∂I

∂V3
∂T


∣∣∣∣
(E0,I0,T 0,S0,R0)

=

 µ+ β 0 0
−β δ + γ + µ 0
0 −γ µ


and ρ is the spectral radius of the matrix FV −1.

It follows that

R0 =
kΛ

(µ+ α)(µ+ β)
. (4)

4.2. Existence of an endemic equilibrium

In this subsection, we explore the existence of an endemic equilibrium.

Proposition 1. Assume R0 > 1, then system (1) has a unique endemic

equilibrium E∗ = (S∗, E∗, I∗, T ∗, R∗).

Proof. The endemic equilibrium is obtained by solving the algebraic equa-
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tion 

0 = Λ− Sg(E)− (µ+ α)S,

0 = Sg(E)− (µ+ β)E,

0 = βE − (δ + γ + µ)I,

0 = γI − µT,

0 = αS − µR.

(5)

From the last four equations of (5), we have that

S =
(µ+ β)E

g(E)
,

I =
βE

δ + γ + µ
,

T =
γβE

µ(δ + γ + µ)
and

R =
α(µ+ β)E

µg(E)
. (6)

Substituting into the first equation of (5), we have that

g(E) =
(µ+ α)(µ+ β)E

Λ− (µ+ β)E
:= h(E). (7)

Note that E = 0 yields the disease free equilibrium.

It is clear that E =
Λ

µ+ β
is a vertical asymptote for the function

h(E). Also for E >
Λ

µ+ β
, we have that g(E) > 0 and h(E) < 0, so there

is no solution for (7). Assuming that 0 < E <
Λ

µ+ β
, we have

h′(E) =
Λ(µ+ α)(µ+ β)

[Λ− (µ+ β)E]2
> 0 and

h′(E) =
2Λ(µ+ α)(µ+ β)2

[Λ− (µ+ β)E]3
> 0.

It follows that h(E) is concave upward on the interval 0 < E <
Λ

µ+ β

and h(E)→∞ as E → Λ

µ+ β
.
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From the assumption (H1) on the function g, g(0) = h(0) = 0 and

g(E) is concave downward. Therefore the two functions h(E) and g(E)

intersect at a unique point E∗ within the interval

(
0,

Λ

µ+ β

)
.

5. Stability analysis

Next we investigate stability of both the disease free equilibrium and

the endemic equilibrium.

5.1. Stability of the disease free equilibrium

Theorem 2. The disease-free equilibrium is globally asymptotically stable

if 0 < R0 < 1, and unstable if R0 > 1.

Proof. The jacobian matrix of system (1) at the disease free equilibrium

is given as

−(µ+ α) − kΛ

µ+ α
0 0 0

0
kΛ

µ+ α
− (µ+ β) 0 0 0

0 β −(δ + µ+ γ) 0 0

0 0 γ −µ 0

α 0 0 0 −µ



.

Solving the characteristic equations, we obtain the eigenvalues −µ,

−(µ+ α) and −(δ + γ + µ) that are all strictly negative.

Note that the eigenvalue −µ has a geometric multiplicity of order 2. In

addition, we obtain the eigenvalue
kΛ

µ+ α
−(µ+β) which is strictly negative

if 0 < R0 < 1 and strictly positive if R0 > 1.

It follows that the disease free equilibrium is unstable if R0 > 1 and

locally asymptotically stable if 0 < R0 < 1. The global asymptotical
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stability of the disease free equilibrium stems from the fact that there is no

endemic equilibrium in the system when 0 < R0 < 1.

5.2. Stability of the endemic equilibrium

Lemma 3. Let g(E) be a positive smooth function defined on the interval

[0,∞). Suppose that assumptions H1 and H2 hold, then following inequality

is satisfied

1− Eg′(E)

g(E)
≥ 0 for any E > 0. (8)

Proof. We have that

d[g(E)− Eg′(E)]

dE
= −Eg′′(E) ≥ 0

as g′′(E) ≤ 0. This implies that the function g(E) − Eg′(E) is increasing

on the interval [0,∞).

Given the fact that g(0)− 0g′(0) = 0, it follows that

g(E)− Eg′(E) ≥ 0.

Theorem 3. If R0 > 1, then the endemic equilibrium E∗ = (S∗, E∗, I∗, T ∗, R∗)

is locally asymptotically stable.

Proof. For the endemic equilibrium E∗ = (S∗, E∗, I∗, T ∗, R∗), the Jacobian

matrix is

−g(E∗)− (µ+ α) −S∗g′(E∗) 0 0 0

g(E∗) S∗g′(E∗)− (µ+ β) 0 0 0

0 β −(δ + µ+ γ) 0 0

0 0 γ −µ 0

α 0 0 0 −µ


.
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The characteristic equation of this matrix is given by

(λ+ µ)2(λ+ δ + µ+ γ)[(λ+ µ+ β − S∗g′(E∗))(λ+ µ+ α+ g(E∗))

+ S∗g′(E∗)g(E∗)] = 0.

This implies that

(λ+ µ)2(λ+ δ + µ+ γ)(λ2 + a1λ+ a2) = 0, (9)

where

a1 = 2µ+ α+ β + g(E∗)− S∗g′(E∗)

and

a2 = (µ+ β)(µ+ α) + (µ+ β)g(E∗)− (µ+ α)S∗g′(E∗).

It is obvious that equation (9) has real roots λ1 = −µ < 0, λ2 =

−(δ + µ+ γ) < 0, with other roots being the solutions of the equation

λ2 + a1λ+ a2 = 0.

Making use of Lemma 3 and the fact that

S∗ =
(µ+ β)E∗

g(E∗)
,

we have that

a1 = µ+ α+ g(E∗) + (µ+ β)

[
1− E∗

g(E∗)
g′(E∗)

]
> 0

and

a2 = (µ+ β)g(E∗) + (µ+ α)(µ+ β)

[
1− E∗

g(E∗)
g′(E∗)

]
> 0.

6. Concluding remarks and future work

A system of nonlinear ordinary differential equations with a nonlinear

incidence response was derived in order to predict the evolution of obesity
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and diabetes in a population. Existence, uniqueness, boundedness and

positivity of the solution of the system were discussed.

In particular, existence of equilibria and the computation of the basic

reproduction ratio were established. Furthermore, stability of both disease

free and endemic equilibria were investigated thanks to spectral methods

and Lyapunov stability theory.

A future extension of this work will be to perform numerical simula-

tions on the system (1) for different sets of parameters and different set of

initial points in order to order to validate the analytical results obtained.
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