Journal of Analysis and Applications

Vol. 20 (2022), No.1, pp.69-80

ISSN: 0972-5954

© SAS International Publications

URL: www.sasip.net

Direct sum of star matrices

K.U. Divya* and K. Somasundaram

Abstract. Let S_n be the symmetric group of order n. The permanent of an $n \times n$ matrix $A = (a_{ij})$ is defined as $\sum_{\sigma \in S_n} \prod_{i=1}^n a_{i\sigma(i)}$. Let Ω_n denote the set of all $n \times n$ doubly stochastic matrices. A matrix $B \in \Omega_n$ is said to be a star matrix if $per(\alpha B + (1 - \alpha)A \le 1)$

 Ω_n denote the set of all $n \times n$ doubly stochastic matrices. A matrix $B \in \Omega_n$ is said to be a star matrix if $per(\alpha B + (1 - \alpha)A \le \alpha perB + (1 - \alpha)perA$, for all $A \in \Omega_n$ and all $\alpha \in [0, 1]$. Karuppanchetty and Maria Arulraj [3] proposed the following two conjectures:

- (i) The direct sum of two star matrices is a star (also known as the star conjecture).
- (ii) The only stars in Ω_n are the direct sum of 2×2 star matrices and identity matrices upto permutations of rows and columns.

In this paper, we derive some sufficient conditions for the direct sum of matrices in Ω_2 to satisfy the inequality of the star conjecture. We also provide some classes of matrices in Ω_n which satisfy the star condition.

AMS Subject Classification (2020): 15A15

Keywords: Doubly stochastic matrices, permanents, star matrices

1. Introduction

Let Ω_n denote the set of all $n \times n$ doubly stochastic matrices and S_n be the symmetric group of order n. If $A = (a_{ij})$ is an arbitrary $n \times n$ matrix, then the permanent of A is a scalar valued function given by

$$perA = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i\sigma_{(i)}}.$$

^{*}Corresponding author

The permanent function has been studied extensively of date, and it is known that if $A \in \Omega_n$ $0 \le perA \le 1$. The direct sum of the matrices $A_i, 1 \le i \le n$, is defined as follows:

$$\bigoplus_{i=1}^{n} A_{i} = \operatorname{diag}(A_{1}, A_{2}, ..., A_{n}) = \begin{pmatrix} A_{1} & \mathbf{0} & ... & \mathbf{0} \\ \mathbf{0} & A_{2} & ... & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & ... & A_{n} \end{pmatrix},$$

where $\mathbf{0}$ is the zero matrix.

It is natural to inquire whether permanent is a convex function on Ω_n , that is, to see the validity of the inequality

$$per(\alpha B + (1 - \alpha)A) \le \alpha perB + (1 - \alpha)perA$$

for all $A, B \in \Omega_n$ and for all $\alpha \in [0, 1]$. That this is not the case in general was shown by Perfect [5]. However, in this paper, for $\alpha = \frac{1}{2}$ and B = I the author showed that

$$per(\frac{1}{2}I + \frac{1}{2}A) \le \frac{1}{2} + \frac{1}{2}perA \text{ for all } A \in \Omega_n.$$

Brualdi and Newman [1] improved this result by showing that

$$per(\alpha I_n + (1 - \alpha)A) \le \alpha + (1 - \alpha)perA$$
,

for all $A \in \Omega_n$ and for all $\alpha \in [0, 1]$.

Moreover, they established that the inequality

$$per(\alpha B + (1 - \alpha)A) < \alpha perB + (1 - \alpha)perA$$

will hold for all $\alpha \in [0,1]$ and for all $A, B \in \Omega_n$ iff for all $A, B \in \Omega_n$

$$\sum_{i,j=1}^{n} b_{ij} per A_{ij} \le per B + (n-1) per A, \tag{1}$$

where $B = (b_{ij})$ and A_{ij} is the $(n-1) \times (n-1)$ matrix obtained by deleting the i^{th} row and j^{th} column of A and equality holds iff A = B. As $\alpha \in [0, 1]$ the inequality (1) is also written as

$$\sum_{i,j=1}^{n} a_{ij} per B_{ij} \le per A + (n-1) per B, \tag{2}$$

where $A = (a_{ij})$ and B_{ij} is the $(n-1) \times (n-1)$ matrix obtained by deleting the i^{th} row and j^{th} column of B.

Wang [7] called a matrix B in Ω_n a star, if B satisfies

$$per(\alpha B + (1 - \alpha)A) \le \alpha perB + (1 - \alpha)perA$$
,

for all $A \in \Omega_n$ and for all $\alpha \in [0, 1]$.

According to the result of Brualdi and Newman [1] the necessary and sufficient condition for a matrix $B \in \Omega_n$ to be a star matrix is that it should satisfy inequality (1). The inequality (2) is equivalent to (1) as $\alpha \in [0, 1]$.

Therefore the inequality (2) is also a necessary and sufficient condition for a matrix $B \in \Omega_n$ to be a star matrix. We call the inequality (2) as a star inequality.

Wang [7] proved that (i) every 2×2 doubly stochastic matrix is a star and (ii) if $B \in \Omega_n$ is a star then $perB \ge \frac{1}{2^{n-1}}$.

Karuppanchetty and Maria Arulraj [3] have disproved Wang's conjecture [7] which states that for $n \geq 3$ permutation matrices are the only stars, by proving the following matrix B to be a star matrix:

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & x & 1 - x \\ 0 & 1 - x & x \end{pmatrix} = 1 \bigoplus \begin{pmatrix} x & 1 - x \\ 1 - x & x \end{pmatrix}$$

where $0 \le x \le 1$.

They also established that the only stars in Ω_3 are PBQ where B is as defined above and P and Q are permutation matrices.

Let

$$M(a,b,c,d) = \begin{pmatrix} a & b & 1-a-b \\ c & d & 1-c-d \\ 1-a-c & 1-b-d & a+b+c+d-1 \end{pmatrix} \in \Omega_3.$$

The matrix $B = 1 \bigoplus M(a, b; c, d) \in \Omega_4$ where 0 < a, b < 1 and $a+b\neq 1$ is not a star since the only star in Ω_3 is M(a,1-a;1-a,a) up to permutation of rows and columns. They [3] (quoted by Cheon and Wanless [2]) proposed the following two conjectures:

- (i) The direct sum of two star matrices is a star (also known as the star conjecture).
- (ii) The only stars in Ω_n are the direct sum of 2×2 star matrices and identity matrices upto permutations of rows and columns.

Both conjectures are still open for $n \geq 4$. Maria Arulraj and K. Somasundaram [6] derived a necessary condition for a matrix $B \in \Omega_n$ to be a star matrix. For integers r and $n, (1 \le r \le n)$, let $Q_{r,n}$ denote the set of all sequences $(i_1, i_2, ... i_r)$ such that $1 \le i_1 ... < i_r \le n$.

The following notations are defined by Minc [4].

For fixed $\alpha, \beta \in Q_{r,n}$ let $A(\alpha, \beta)$ denote the submatrix of A obtained by deleting the rows α and the columns β of A, let $A[\alpha|\beta]$ denote the submatrix of A formed by the rows α and the columns β of A and let $T(A[\alpha, \beta])$ denote the sum of all the elements of the matrix $A[\alpha|\beta]$.

Let

$$S_r(A, B) = \sum_{\alpha, \beta \in Q_{r,n}} perA[\alpha/\beta]perB(\alpha/\beta).$$

The following Lemma is due to Maria Arulraj and Somasundaram [6] which gives the necessary condition for a matrix $B \in \Omega_n$ to be a star matrix. **Lemma 1.1.** Let $B \in \Omega_n$. If there exists an $n \times n$ matrix $E \neq 0$, such that

72

the perturbation matrix $B + E \in \Omega_n$ and $\sum_{k=0}^{n-2} (n - (k+1))S_k(B, E) < 0$, then B is not a star.

In this paper, we derive some sufficient conditions for the direct sum of matrices in Ω_2 to satisfy the inequality of the star conjecture. We also provide some classes of matrices in Ω_n which satisfy the star inequality (2).

2. Direct sum of star matrices

In this section, we prove the following theorems related to the first conjecture.

Theorem 2.1. Let

$$B = \bigoplus_{i=1}^{m} \begin{pmatrix} x_i & 1 - x_i \\ 1 - x_i & x_i \end{pmatrix}$$

where $\frac{1}{2} \le x_i \le 1 - \frac{1}{2m}$. Then B satisfies (2) for all $A \in \Omega_n$ such that for all odd p, $T(A[(p, p+1)/(p, p+1)] \le 1$.

Proof.

$$\sum_{i,j=1}^{n} a_{ij} per B_{ij} - per A - (n-1) per B$$

$$= a_{11} x_1 (2x_2^2 - 2x_2 + 1) \dots (2x_m^2 - 2x_m + 1) + a_{12} (1 - x_1) (2x_2^2 - 2x_2 + 1) \dots (2x_m^2 - 2x_m + 1) + a_{21} (1 - x_1) (2x_2^2 - 2x_2 + 1) \dots (2x_m^2 - 2x_m + 1)$$

$$+ a_{22} x_1 (2x_2^2 - 2x_2 + 1) \dots (2x_m^2 - 2x_m + 1) + a_{33} x_2 (2x_1^2 - 2x_1 + 1) \dots (2x_m^2 - 2x_m + 1) + a_{34} (1 - x_2) (2x_1^2 - 2x_1 + 1) \dots (2x_m^2 - 2x_m + 1)$$

$$+ a_{43} (1 - x_2) (2x_1^2 - 2x_1 + 1) \dots (2x_m^2 - 2x_m + 1) + a_{44} x_2 (2x_1^2 - 2x_1 + 1) \dots (2x_m^2 - 2x_m + 1) + \dots - per A - (n - 1)$$

$$(2x_1^2 - 2x_1 + 1) \dots (2x_m^2 - 2x_m + 1)$$

$$\leq (a_{11} + a_{12} + a_{21} + a_{22}) x_1 (2x_2^2 - 2x_2 + 1) \dots (2x_m^2 - 2x_m + 1) + (a_{33} + a_{34} + a_{43} + a_{44}) x_2 (2x_2^2 - 2x_2 + 1) \dots (2x_m^2 - 2x_m + 1)$$

$$+ (a_{33} + a_{34} + a_{43} + a_{44}) x_2 (2x_2^2 - 2x_2 + 1) \dots (2x_m^2 - 2x_m + 1)$$

$$\begin{split} &+\cdots - per A - (n-1)(2x_1^2 - 2x_1 + 1)...(2x_m^2 - 2x_m + 1) \\ &\leq x_1(2x_2^2 - 2x_2 + 1)\cdots(2x_m^2 - 2x_m + 1) + x_2(2x_1^2 - 2x_1 + 1) \\ &\cdots (2x_m^2 - 2x_m + 1)\cdots + x_m(2x_1^2 - 2x_1 + 1)\cdots(2x_{m-1}^2 - 2x_{m-1} + 1) \\ &- per A - (n-1)(2x_1^2 - 2x_1 + 1)\cdots(2x_m^2 - 2x_m + 1) \\ &\leq (2x_2^2 - 2x_2 + 1)\cdots(2x_m^2 - 2x_m + 1)[x_1 - \frac{n-1}{m}(2x_1^2 - 2x_1 + 1)] \\ &+ (2x_1^2 - 2x_1 + 1)\cdots(2x_m^2 - 2x_m + 1)[x_2 - \frac{n-1}{m}(2x_2^2 - 2x_2 + 1)] \\ &+ \cdots + (2x_1^2 - 2x_1 + 1)\cdots(2x_{m-1}^2 - 2x_{m-1} + 1) \\ &[x_m - \frac{n-1}{m}(2x_m^2 - 2x_m + 1)] - per A. \end{split}$$

Now,

$$x_{i} - \frac{n-1}{m}(2x_{i}^{2} - 2x_{i} + 1)$$

$$= x_{i} - \frac{2m-1}{m}(2x_{i}^{2} - 2x_{i} + 1)$$

$$= x_{i} + (-2 + \frac{1}{m})(2x_{i}^{2} - 2x_{i} + 1) \le x_{i} + (-2 + \frac{1}{m})\frac{1}{2}$$

$$= x_{i} - 1 + \frac{1}{2m} \le 0$$

since
$$\frac{1}{2} \le x_i \le 1 - \frac{1}{2m}$$
.

Therefore, the inequality (2) is satisfied.

Theorem 2.2. Let

$$B = \begin{pmatrix} \cdots & \cdots & \cdots & \cdots & \cdots & x_1 & 1 - x_1 \\ \cdots & \cdots & \cdots & \cdots & \cdots & 1 - x_1 & x_1 \\ \cdots & \cdots & \cdots & \cdots & x_2 & 1 - x_2 & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & 1 - x_2 & x_2 & \cdots & \cdots \\ \vdots & \vdots \\ x_m & 1 - x_m & \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 - x_m & x_m & \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix},$$

where
$$\frac{1}{2} \le x_i \le 1 - \frac{1}{2m}$$
.

Then B satisfies the star condition for all $A \in \Omega_n$ such that $T(A[p, p + 1/n - q, n - q + 1] \le 1$ for all odd $p, 1 \le p \le n$ and all odd $q, 1 \le q \le n$.

Proof.

$$\begin{split} &\sum_{i,j=1}^{n} a_{ij} per B_{ij} - per A - (n-1) per B \\ &= a_{1,n-1} x_1 (2x_2^2 - 2x_2 + 1) \cdots (2x_m^2 - 2x_m + 1) + a_{1,n} (1 - x_1) \\ &(2x_2^2 - 2x_2 + 1) \cdots (2x_m^2 - 2x_m + 1) + a_{2,n-1} (1 - x_1) \\ &(2x_2^2 - 2x_2 + 1) \cdots (2x_m^2 - 2x_m + 1) + a_{2,n} x_1 (2x_2^2 - 2x_2 + 1) \cdots \\ &(2x_m^2 - 2x_m + 1) \cdots + a_{n-1,1} x_m (2x_1^2 - 2x_1 + 1) \cdots (2x_m^2 - 2x_m + 1) \\ &+ (1 - x_m) a_{n-1,2} (2x_1^2 - 2x_1 + 1) \cdots 2x_m^2 - 2x_m + 1) + (1 - x_m) a_{n,1} \\ &(2x_1^2 - 2x_1 + 1) \cdots (2x_m^2 - 2x_m + 1) + x_m a_{n,2} (2x_1^2 - 2x_1 + 1) \cdots \\ &(2x_m^2 - 2x_m + 1) - per A - (n-1)(2x_1^2 - 2x_1 + 1) \cdots (2x_m^2 - 2x_m + 1) \\ &\leq (a_{1,n-1} + a_{1,n} + a_{2,n-1} + a_{2,n}) x_1 (2x_2^2 - 2x_2 + 1) \cdots (2x_m^2 - 2x_m + 1) \\ &+ \cdots + (a_{n-1,1} + a_{n-1,2} + a_{n,1} + a_{n,2}) x_m (2x_1^2 - 2x_1 + 1) \cdots \\ &(2x_{m-1}^2 - 2x_m + 1) - per A - (n-1)(2x_1^2 - 2x_1 + 1) \cdots (2x_m^2 - 2x_m + 1) \\ &\leq x_1 (2x_2^2 - 2x_2 + 1) \cdots (2x_m^2 - 2x_m + 1) + x_2 (2x_1^2 - 2x_1 + 1) \cdots \\ &(2x_m^2 - 2x_m + 1) \cdots + x_m (2x_1^2 - 2x_1 + 1) \cdots (2x_{m-1}^2 - 2x_{m-1} + 1) \\ &- per A - (n-1)(2x_1^2 - 2x_1 + 1) \cdots (2x_m^2 - 2x_m + 1) \\ &= (2x_2^2 - 2x_2 + 1) \cdots (2x_m^2 - 2x_m + 1) [x_1 - \frac{n-1}{m} (2x_1^2 - 2x_1 + 1)] \\ &+ (2x_1^2 - 2x_1 + 1) \cdots (2x_{m-1}^2 - 2x_{m-1} + 1) [x_2 - \frac{n-1}{m} (2x_2^2 - 2x_2 + 1)] + \cdots + \\ &(2x_1^2 - 2x_1 + 1) \cdots (2x_{m-1}^2 - 2x_{m-1} + 1) [x_m - \frac{n-1}{m} (2x_2^2 - 2x_2 + 1)] - per A. \end{split}$$

Now,

$$x_i - \frac{n-1}{m}(2x_i^2 - 2x_i + 1)$$
$$= x_i - \frac{2m-1}{m}(2x_i^2 - 2x_i + 1)$$

$$= x_i + (-2 + \frac{1}{m})(2x_i^2 - 2x_i + 1) \le x_i + (-2 + \frac{1}{m})\frac{1}{2}$$
$$= x_i - 1 + \frac{1}{2m} \le 0$$

since $\frac{1}{2} \le x_i \le 1 - \frac{1}{2m}$.

Therefore, the inequality (2) is satisfied.

Theroem 2.3. Let

$$B = \begin{pmatrix} x & 1-x \\ 1-x & x \end{pmatrix} \bigoplus \begin{pmatrix} y & 1-y \\ 1-y & y \end{pmatrix}$$

where $0 \le x, y \le \frac{1}{2}$. Then B satisfies (1) for matrices $A \in \Omega_4$ where

$$A = \begin{pmatrix} a & 0 & 1-a & 0\\ 0 & a & 0 & 1-a\\ 1-a & 0 & a & 0\\ 0 & 1-a & 0 & a \end{pmatrix}$$

 $where \ 0 \leq a \leq 1.$

Proof. A necessary and sufficient condition for a matrix $B \in \Omega_4$ to be a star is that

$$\sum_{i,j=1}^{4} b_{ij} per A_{ij} - per B - 3per A \le 0.$$

Now, consider

$$\sum_{i,j=1}^{4} b_{ij} per A_{ij} - per B - 3per A$$

$$= x(a^3 + a(1-a)^2) + x(a^3 + (1-a)^2) + y(a^3 + (1-a)^2)$$

$$+ y(a^3 + (1-a)^2) - per B - 3[a^4 + a^2(1-2a+a^2) + (1-a)(a^2(1-a)^2) + (1-a)^3)]$$

$$\leq 2x(a^3 + a(1-a)^2) + 2y(a^3 + a(1-a)^2) - \frac{3}{32} - 3[a^4 + a^2 - 2a^3 + a^4]$$

$$\begin{split} &+ (1-a)(a^2-a^3+1-3a+3a^2-a^3)] \\ &\leq 2(a^3+a(1-2a+a^2)) - \frac{3}{32} - 3[2a^4-2a^3+a^2+a^4-2a^3+a^2+1 \\ &+ 4a^2+a^4-4a-4a^3+2a^2] \\ &= 4a^3-4a^2+2a-\frac{3}{32} - 3(4a^4-8a^3+8a^2-4a+1) \\ &= 4a^3-4a^2+2a-\frac{3}{32} - 12a^4+24a^3-24a^2+12a-3 \\ &= -12a^4+28a^3-28a^2+14a-\frac{99}{32} \\ &< 0. \end{split}$$

Theorem 2.4. Let

$$B = \begin{pmatrix} x & 1-x \\ 1-x & x \end{pmatrix} \bigoplus \begin{pmatrix} y & 1-y \\ 1-y & y \end{pmatrix},$$

where $0 \le x, y \le \sqrt{0.375}$. Then B satisfies the condition (2) for all $A \in \Omega_4$ of the form

$$A = \begin{pmatrix} a & 0 & 1-a & 0\\ 0 & a & 0 & 1-a\\ 1-a & 0 & a & 0\\ 0 & 1-a & 0 & a \end{pmatrix},$$

where $0 \le a \le \sqrt{0.375}$.

Proof.

$$\sum_{i,j=1}^{4} a_{ij} per B_{ij} - per A - 3per B$$

$$= 2ax(2y^2 - 2y + 1) + 2ay(2x^2 - 2x + 1) - per A - 3(2y^2 - 2y + 1)$$

$$(2x^2 - 2x + 1)$$

$$= (2y^2 - 2y + 1)(2ax - \frac{3}{2}(2x^2 - 2x + 1)) + (2x^2 - 2x + 1)\left(2ay - \frac{3}{2}(2y^2 - 2y + 1)\right) - per A.$$

It is easy to see that

$$2ax - \frac{3}{2}(2x^2 - 2x + 1) \le 0$$

and

$$0 \le 2ax \le 0.75,$$

since
$$\frac{1}{2} \le 2x^2 - 2x + 1 \le 1$$
 and $0 \le x, y, a \le \sqrt{0.375}$.

Hence the inequality (2) is satisfied.

Theorem 2.5. Let

$$B = \begin{pmatrix} x & 1-x \\ 1-x & x \end{pmatrix} \bigoplus \begin{pmatrix} y & 1-y \\ 1-y & y \end{pmatrix}.$$

Then B satisfies the star condition for all $A \in \Omega_4$ of the form

$$A = \begin{pmatrix} a & a & 1 - 2a & 0 \\ a & a & 1 - 2a & 0 \\ 1 - 2a & 1 - 2a & 4a - 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

where $0 \le a \le 0.1875$.

Proof.

$$\sum_{i,j=1}^{4} a_{ij} per B_{ij} - per A - 3per B$$

$$= ax(y^2 + (1-y)^2) + a(1-x)(y^2 + (1-y)^2) + a(1-x)(y^2 + (1-y)^2)$$

$$+ ax(y^2 + (1-y)^2) + (4a-1)y(x^2 + (1-x)^2) + y(x^2 + (1-x)^2)$$

$$- per B - 3(2x^2 - 2x + 1)(2y^2 - 2y + 1)$$

$$= 2ax(y^2 + (1-y)^2) + 2a(1-x)(y^2 + (1-y)^2) + 4ay(x^2 + (1-x)^2)$$

$$- per B - 3(2x^2 - 2x + 1)(2y^2 - 2y + 1)$$

$$= 2a(y^2 + (1-y)^2) + 4ay(x^2 + (1-x)^2) - per B - 3(2x^2 - 2x + 1)$$

$$(2y^2 - 2y + 1)$$

$$= (2a - \frac{3}{2}(2x^2 - 2x + 1))(2y^2 - 2y + 1) + (4ay - \frac{3}{2}(2y^2 - 2y + 1))$$

$$(2x^2 - 2x + 1) - per B.$$

$$\frac{1}{2} \le 2x^2 - 2x + 1 \le 1.$$

Multiplying by $\frac{-3}{2}$ throughout the above inequality,

$$\begin{split} &\frac{-3}{4} \geq \frac{-3}{2}(2x^2 - 2x + 1) \geq \frac{-3}{2}.\\ &2a - \frac{3}{2}(2x^2 - 2x + 1) \leq 2a - \frac{3}{4} \leq 0 \text{ if } 2a \leq \frac{3}{4}\\ &\text{i.e } a \leq \frac{3}{8}.\\ &4ay - \frac{3}{2}(2y^2 - 2y + 1) \leq 4ay - \frac{3}{4}. \end{split}$$

Since $y \le 1$, $4ay - \frac{3}{4} \le 4a - \frac{3}{4} \le 0$ if $4a \le \frac{3}{4}$ i.e $a \le \frac{3}{16}$. Hence the inequality (2) is satisfied.

3. Conclusion.

Conjectures on star matrices are well known conjectures in the theory of permanents. In this paper, we provided some classes of matrices in Ω_n which satisfy the inequality of the star conjecture. We also provided some classes of matrices in Ω_4 which satisfy the star condition for the direct sum of two 2×2 star matrices.

Acknowledgement. We would like to express our sincere gratitude to the referees for their valuable suggestions and comments which improved the paper.

References

- [1] R.A.Brualdi and M.Newman, Inequalities for permanents and permanental minors, Proc. Cambridge Philos. Soc., 61 (1965), 741-746.
- [2] C.S.Cheon and I.M.Wanless, An update on Minc's survey of open problems involving permanents, Linear Algebra and its applications, 403 (2005), 314-342.
- [3] C.S.Karuppanchetty and S.Maria Arulraj, Falsity of Wang's conjecture on stars, Linear Algebra and its Applications, 277 (1998), 49-56.

- [4] H.Minc, Permanents, Encyclopedia Math. Appl, 6, Addison-Wesley, Reading, Mass, 1978.
- [5] H.Perfect, An inequality for the permanent function, Proc. Cambridge Philo Soc, 60 (1964), 1030-1031.
- [6] S.Maria Arulraj and K.Somasundaram, Star matrices: Properties and Conjectures, Applied Mathematics E-Notes, 7 (2007), 42-49
- [7] E.T.H.Wang, When is the permanent function convex on the set of doubly stochastic matrices?, American Mathematical Monthly, 86 (1979), 119-121.

Department of Mathematics Amrita School of Engineering Amrita Vishwa Vidyapeetham Coimbatore

India

E-mail: divyaku93@gmail.com

Department of Mathematics Amrita School of Engineering Amrita Vishwa Vidyapeetham Coimbatore

India

E-mail: s_sundaram@cb.amrita.edu

(Received: August, 2021; Revised: October, 2021)